powered by \triangle FERNBACH

The effective interest rate (EIR) for a deal is calculated using the following formula:

$$
C F\left(t_{0}\right)=\sum_{i \geq 1} C F\left(t_{i}\right) * \exp \left(-E I R * \Delta\left(t_{i}, t_{0}\right)\right)
$$

Here $C F\left(t_{0}\right)$ represents the initial cash flows for the deal (i.e. the outpayment of the nominal amount by the bank plus/minus possibly arising transaction costs, premiums/discounts or upfront payments), $C F\left(t_{j}\right)$ stands for the cash flows for the deal at further payment dates t_{i} and (t_{j}, t_{0}) is the time gap between payment date t_{i} and deal orgination date t_{0}.

Hence, the EIR is calculated by implicitly solving the above non-linear equation. In the solution, this is performed by using a Newton iteration.
The above formula expresses that the EIR exactly discounts the estimated future cash payments or receipts through the expected life of a financial instrument to its net carrying amount.

The following example explains an EIR calculation (regardless of the general challenges of EIR calculations and possible effects occurring from changes in deal data).

The following deal data are considered:

Deal Data	
Deal type	Fixed rate loan
Deal start Date	19.12 .2013
Maturity	03.01 .2015
Nextinterest payment Date	03.01 .2014
Principal	1.000 .000
Discount	3,000
Client rate	6.00%
Margin	1.00%
Daycount convention	$30 / 360$
Interest payments	quarterly

[^0]| Liquidity Cash Flows | | | | |
| :---: | :---: | ---: | ---: | ---: |
| value date | capital | interest | discount | time gap |
| $19 / 12 / 2013$ | $-1,000,000.00$ | | $3,000.00$ | 0 |
| $03 / 01 / 2014$ | | $2,333.33$ | | 0.03889 |
| $03 / 04 / 2014$ | | $15,000.00$ | | 0.28889 |
| $03 / 07 / 2014$ | | $15,000.00$ | | 0.53889 |
| $03 / 10 / 2014$ | | $15,000.00$ | | 0.78889 |
| $03 / 01 / 2015$ | $1,000,000.00$ | $15,000.00$ | | 1.03889 |

Using the EIR formula, the following equation needs to be considered:

Solving the equation leads to an approximated value for $E I R=6.45264 \%$.

[^0]: Hence, the following cash flows are relevant:

